• Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease—a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karschnia, P. et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood 133, 2212–2221 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karschnia, P. et al. Neurologic toxicities following adoptive immunotherapy with BCMA-directed CAR T-cells. Blood 142, 1243–1248 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wudhikarn, K. et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv. 4, 3024–3033 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. The CAR-HEMATOTOX score as a prognostic model of toxicity and response in patients receiving BCMA-directed CAR-T for relapsed/refractory multiple myeloma. J. Hematol. Oncol. 16, 88 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. The CAR-HEMATOTOX score identifies patients at high risk for hematological toxicity, infectious complications, and poor treatment outcomes following brexucabtagene autoleucel for relapsed or refractory MCL. Am. J. Hematol. 98, 1699–1710 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, T. et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 4, 3776–3787 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood 138, 2499–2513 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, J. A. et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 131, 121–130 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL. J. Immunother. Cancer 10, e004475 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bethge, W. A. et al. GLA/DRST real-world outcome analysis of CAR-T cell therapies for large B-cell lymphoma in Germany. Blood 140, 349–358 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kampouri, E. et al. Infections after chimeric antigen receptor (CAR)-T-cell therapy for hematologic malignancies. Transpl. Infect. Dis. 25, e14157 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Gudiol, C., Lewis, R. E., Strati, P. & Kontoyiannis, D. P. Chimeric antigen receptor T-cell therapy for the treatment of lymphoid malignancies: is there an excess risk for infection? Lancet Haematol. 8, e216–e228 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hines, M. R. et al. Immune effector cell associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS). Transpl. Cell Ther. 29, 438.e1–438.e16 (2023).

    Article 

    Google Scholar 

  • Cordeiro, A. et al. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol. Blood Marrow Transpl. 26, 26–33 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhao, A. et al. Secondary myeloid neoplasms after CD19 CAR T therapy in patients with refractory/relapsed B-cell lymphoma: case series and review of literature. Front. Immunol. 13, 1063986 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghilardi, G. et al. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat. Med. 30, 984–989 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Storgard, R., Rejeski, K., Perales, M. A., Goldman, A. & Shouval, R. T-cell malignant neoplasms after chimeric antigen receptor T-cell therapy. JAMA Oncol. (2024).

  • Chakraborty, R., Hill, B. T., Majeed, A. & Majhail, N. S. Late effects after chimeric antigen receptor T cell therapy for lymphoid malignancies. Transpl. Cell Ther. 27, 222–229 (2021).

    Article 
    CAS 

    Google Scholar 

  • Strati, P. et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood 137, 3272–3276 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion. Sci. Adv. 9, eadg3919 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobs, M. T. et al. Severity of cytokine release syndrome influences outcome after axicabtagene ciloleucel for large B cell lymphoma: results from the US Lymphoma CAR-T Consortium. Clin. Lymphoma Myeloma Leuk. 22, 753–759 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brammer, J. E. et al. Early toxicity and clinical outcomes after chimeric antigen receptor T-cell (CAR-T) therapy for lymphoma. J. Immunother. Cancer 9, e002303 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemoine, J. et al. Non-relapse mortality after CAR T-cell therapy for large B-cell lymphoma: a LYSA study from the DESCAR-T registry. Blood Adv. 7, 6589–6598 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDonald, G. B. et al. Survival, nonrelapse mortality, and relapse-related mortality after allogeneic hematopoietic cell transplantation: comparing 2003–2007 versus 2013–2017 cohorts. Ann. Intern Med. 172, 229–239 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dreyling, M. et al. Durable response after tisagenlecleucel in adults with relapsed/refractory follicular lymphoma: ELARA trial update. Blood 143, 1713–1725 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobson, C. A. et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 23, 91–103 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abramson, S. J. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bishop, M. R. et al. Second-line tisagenlecleucel or standard care in aggressive B-cell lymphoma. N. Engl. J. Med. 386, 629–639 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Houot, R. et al. Axicabtagene ciloleucel as second-line therapy in large B cell lymphoma ineligible for autologous stem cell transplantation: a phase 2 trial. Nat. Med. 29, 2593–2601 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamdar, M. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 399, 2294–2308 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kato, K. et al. Phase 2 study of axicabtagene ciloleucel in Japanese patients with relapsed or refractory large B-cell lymphoma. Int. J. Clin. Oncol. 27, 213–223 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neelapu, S. S. et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat. Med. 28, 735–742 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neelapu, S. S. et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 141, 2307–2315 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sehgal, A. et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): an open-label, phase 2 study. Lancet Oncol. 23, 1066–1077 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Westin, J. R. et al. Survival with axicabtagene ciloleucel in large B-cell lymphoma. N. Engl. J. Med. 389, 148–157 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Y. et al. Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial. Nat. Med. 29, 2286–2294 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-Cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mi, J. Q. et al. Phase II, open-label study of ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor-T-cell therapy, in Chinese patients with relapsed/refractory multiple myeloma (CARTIFAN-1). J. Clin. Oncol. 41, 1275–1284 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez-Otero, P. et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N. Engl. J. Med. 388, 1002–1014 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: results from the US Lymphoma CAR T Consortium. J. Clin. Oncol. 41, 2594–2606 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamilton, M. P. et al. CAR19 monitoring by peripheral blood immunophenotyping reveals histology-specific expansion and toxicity. Blood Adv. (2024).

  • Berning, P. et al. Chimeric antigen receptor-T cell therapy shows similar efficacy and toxicity in patients with diffuse large B-cell lymphoma aged 70 and older compared to younger patients: a multicenter cohort study. Hemasphere 8, e54 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiappella, A. et al. Axicabtagene ciloleucel treatment is more effective in primary mediastinal large B-cell lymphomas than in diffuse large B-cell lymphomas: the Italian CART-SIE study. Leukemia 38, 1107–1114 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Philippis, C. et al. Out of specification tisagenlecleucel is associated with outcomes comparable to standard of care product in relapsed or refractory diffuse large B-cell lymphoma. Bone Marrow Transpl. 59, 569–571 (2024).

    Article 

    Google Scholar 

  • Dores, G. M., Jason, C., Niu, M. T. & Perez-Vilar, S. Adverse events reported to the U.S. Food and Drug Administration Adverse Event Reporting System for tisagenlecleucel. Am. J. Hematol. 96, 1087–1100 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grana, A. et al. Safety of axicabtagene xiloleucel for the treatment of relapsed or refractory large B-cell lymphoma. Clin. Lymphoma Myeloma Leuk. 21, 238–245 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iovino, L. et al. Predictors of response to axicabtagene-ciloleucel CAR T cells in aggressive B cell lymphomas: a real-world study. J. Cell Mol. Med. 26, 5976–5983 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobson, C. A. et al. Real-world evidence of axicabtagene ciloleucel for the treatment of large B cell lymphoma in the United States. Transpl. Cell Ther. 28, 581.e581–581.e588 (2022).

    Google Scholar 

  • Kuhnl, A. et al. A national service for delivering CD19 CAR-Tin large B-cell lymphoma—the UK real-world experience. Br. J. Haematol. 198, 492–502 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwon, M. et al. Axicabtagene ciloleucel compared to tisagenlecleucel for the treatment of aggressive B-cell lymphoma. Haematologica 108, 110–121 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J. Clin. Oncol. 38, 3119–3128 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riedell, P. A. et al. Patterns of use, outcomes, and resource utilization among recipients of commercial axicabtagene ciloleucel and tisagenlecleucel for relapsed/refractory aggressive B cell lymphomas. Transpl. Cell Ther. 28, 669–676 (2022).

    Article 
    CAS 

    Google Scholar 

  • Spanjaart, A. M. et al. The Dutch CAR-T tumorboard experience: population-based real-world data on patients with relapsed or refractory large B-cell lymphoma referred for CD19-directed CAR T-cell therapy in the Netherlands. Cancers 15, 4334 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trando, A. et al. Outcomes of chimeric antigen receptor (CAR) T-cell therapy in patients with large B-cell lymphoma (LBCL): a single-institution experience. Cancers 15, 4671 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wudhikarn, K. et al. Low toxicity and excellent outcomes in patients with DLBCL without residual lymphoma at the time of CD19 CAR T-cell therapy. Blood Adv. 7, 3192–3198 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akhtar, O. S. et al. Simple score of albumin and CRP predicts high-grade toxicity in patients with multiple myeloma receiving CAR-T therapy. Transpl. Cell Ther. 30, 283.e281–283.e210 (2024).

    Article 

    Google Scholar 

  • Caillot, L. et al. Early chimeric antigen receptor T cell expansion is associated with prolonged progression-free survival for patients with relapsed/refractory multiple myeloma treated with Ide-Cel: a retrospective monocentric sudy. Transplant Cell Ther. (2024).

  • Ferreri, C. J. et al. Real-world experience of patients with multiple myeloma receiving ide-cel after a prior BCMA-targeted therapy. Blood Cancer J. 13, 117 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, L. et al. Cellular dynamics following CAR T cell therapy are associated with response and toxicity in relapsed/refractory myeloma. Leukemia 38, 372–382 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, D. K. et al. Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the Myeloma CAR T Consortium. J. Clin. Oncol. 41, 2087–2097 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chong, E. A. et al. Bendamustine as lymphodepletion for brexucabtagene autoleucel therapy of mantle cell lymphoma. Transplant Cell Ther. (2024).

  • Iacoboni, G. et al. Real-world evidence of brexucabtagene autoleucel for the treatment of relapsed or refractory mantle cell lymphoma. Blood Adv. 6, 3606–3610 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J. Clin. Oncol. 41, 555–567 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crowther, M., Lim, W. & Crowther, M. A. Systematic review and meta-analysis methodology. Blood 116, 3140–3146 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Little, J. S. et al. Respiratory infections predominate after day 100 following B-cell maturation antigen–directed CAR T-cell therapy. Blood Adv. 7, 5485–5495 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abramson, J. S. et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: primary analysis of the phase 3 TRANSFORM study. Blood 141, 1675–1684 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sehgal, A. R. et al. Lisocabtagene maraleucel as second-line therapy for R/R large B-cell lymphoma in patients not intended for hematopoietic stem cell transplant: final analysis of the phase 2 PILOT study. Blood 142, 105–105 (2023).

    Article 

    Google Scholar 

  • Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 28, 713–723 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. Influence of adipose tissue distribution, sarcopenia, and nutritional status on clinical outcomes after CD19 CAR T-cell therapy. Cancer Immunol. Res. 11, 707–719 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dos Santos, D. M. C. et al. Increased visceral fat distribution and body composition impact cytokine release syndrome onset and severity after CD19 chimeric antigen receptor T-cell therapy in advanced B-cell malignancies. Haematologica 107, 2096–2107 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Shouse, G. et al. A validated composite comorbidity index predicts outcomes of CAR T-cell therapy in patients with diffuse large B-cell lymphoma. Blood Adv. 7, 3516–3529 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bucklein, V. et al. Inferior outcomes of EU versus US patients treated with CD19 CAR-T for telapsed/tefractory large B-cell lymphoma: association with differences in tumor burden, systemic inflammation, bridging therapy utilization, and CAR-T product use. Hemasphere 7, e907 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al Hadidi, S. & Cliff, E. R. S. CARTIFAN-1: concerning fatal adverse events with global use of chimeric antigen receptor-T-cell therapy in multiple myeloma. Eur. J. Cancer 182, 1–2 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hill, J. A. & Seo, S. K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 136, 925–935 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Busca, A. et al. COVID-19 and CAR T cells: a report on current challenges and future directions from the EPICOVIDEHA survey by EHA-IDWP. Blood Adv. 6, 2427–2433 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spanjaart, A. M. et al. Poor outcome of patients with COVID-19 after CAR T-cell therapy for B-cell malignancies: results of a multicenter study on behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party and the European Hematology Association (EHA) Lymphoma Group. Leukemia 35, 3585–3588 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyle, S. et al. Improved outcomes of large B-cell lymphoma patients treated with CD19 CAR T in the UK over time. Br. J. Haematol. 204, 507–513 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Locke, F. L. et al. Impact of tumor microenvironment on efficacy of anti-CD19 CAR T cell therapy or chemotherapy and transplant in large B cell lymphoma. Nat. Med. 30, 507–518 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filosto, S. et al. Product attributes of CAR T-cell therapy differentially associate with efficacy and toxicity in second-line large B-cell lymphoma (ZUMA-7). Blood Cancer Discov. 5, 21–33 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garfall, A. L. et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 3, 2812–2815 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K., Jain, M. D. & Smith, E. L. Mechanisms of resistance and treatment of relapse after CAR T-cell therapy for large B-cell lymphoma and multiple myeloma. Transpl. Cell Ther. 29, 418–428 (2023).

    Article 
    CAS 

    Google Scholar 

  • El Chaer, F., Auletta, J. J. & Chemaly, R. F. How I treat and prevent COVID-19 in patients with hematologic malignancies and recipients of cellular therapies. Blood 140, 673–684 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodman, K. A. et al. Long-term effects of high-dose chemotherapy and radiation for relapsed and refractory Hodgkin’s lymphoma. J. Clin. Oncol. 26, 5240–5247 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Danylesko, I. & Shimoni, A. Second malignancies after hematopoietic stem cell transplantation. Curr. Treat. Options Oncol. 19, 9 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Saleem, K. et al. Second primary malignancies in patients with haematological cancers treated with lenalidomide: a systematic review and meta-analysis. Lancet Haematol. 9, e906–e918 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hill, B. T. et al. The non-relapse mortality rate for patients with diffuse large B-cell lymphoma is greater than relapse mortality 8 years after autologous stem cell transplantation and is significantly higher than mortality rates of population controls. Br. J. Haematol. 152, 561–569 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Panagiota, V. et al. Clinical implications and dynamics of clonal hematopoiesis in anti-CD19 CAR T-cell treated patients. Hemasphere 7, e957 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, P. G. et al. Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy. Blood Adv. 5, 2982–2986 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Challen, G. A. & Goodell, M. A. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood 136, 1590–1598 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asada, S. & Kitamura, T. Clonal hematopoiesis and associated diseases: a review of recent findings. Cancer Sci. 112, 3962–3971 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldman, A. et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J. Am. Coll. Cardiol. 78, 1800–1813 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashmi, H. et al. Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Adv. 4, 4086–4090 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Booth, C. M., Karim, S. & Mackillop, W. J. Real-world data: towards achieving the achievable in cancer care. Nat. Rev. Clin. Oncol. 16, 312–325 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Vera-Badillo, F. E. et al. Bias in reporting of randomised clinical trials in oncology. Eur. J. Cancer 61, 29–35 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Schuster, S. J. et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22, 1403–1415 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rejeski, K. et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 142, 865–877 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rejeski, K. et al. An international survey on grading, diagnosis, and management of immune effector cell-associated hematotoxicity (ICAHT) following CAR T-cell therapy on behalf of the EBMT and EHA. Hemasphere 7, e889 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rejeski, K. et al. Applying the EHA/EBMT grading for ICAHT after CAR-T: comparative incidence and association with infections and mortality. Blood Adv. 8, 1857–1868 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lievin, R. et al. Effect of early granulocyte-colony-stimulating factor administration in the prevention of febrile neutropenia and impact on toxicity and efficacy of anti-CD19 CAR-T in patients with relapsed/refractory B-cell lymphoma. Bone Marrow Transpl. 57, 431–439 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 28, 2145–2154 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst. Rev. 10, 1–11 (2021).

    Article 

    Google Scholar 

  • Munn, Z. et al. Methodological quality of case series studies: an introduction to the JBI critical appraisal tool. JBI Evid. Synth. 18, 2127–2133 (2020).

    PubMed 

    Google Scholar 

  • Easterbrook, P. J., Gopalan, R., Berlin, J. & Matthews, D. R. Publication bias in clinical research. Lancet 337, 867–872 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwarzer, G. meta: an R package for meta-analysis. R News 7, 40–45 (2007).

    Google Scholar 

  • Newcombe, R. G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 17, 857–872 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article 

    Google Scholar 

  • Hardy, R. J. & Thompson, S. G. A likelihood approach to meta-analysis with random effects. Stat. Med. 15, 619–629 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knapp, G. & Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Higgins, J. P. T. & Thompson, S. G. Controlling the risk of spurious findings from meta-regression. Stat. Med. 23, 1663–1682 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Higgins, J. et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023) (Cochrane, 2023); www.training.cochrane.org/handbook



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *